Neuro fuzzy and soft computing pdf

5.68  ·  7,333 ratings  ·  849 reviews
Posted on by
neuro fuzzy and soft computing pdf

A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

The paper proposes a new ensemble of neuro-fuzzy rough set classifiers. The ensemble uses fuzzy rules derived by the Adaboost metalearning. The rules are used in an ensemble of neuro-fuzzy rough set systems to gain the ability to work with incomplete data in terms of missing features. This feature is not common among different machine learning methods like neural networks or fuzzy systems. The systems are combined into the larger ensemble to achieve better accuracy.
File Name: neuro fuzzy and soft computing
Size: 33075 Kb
Published 29.12.2018

Lecture 33: Neuro-Fuzzy System

Neuro-fuzzy Rough Classifier Ensemble

A neuro-fuzzy system is based on a fuzzy system which is trained by a learning algorithm derived from neural network theory. The heuristical learning procedure operates on local information, and causes only local modifications in the underlying fuzzy system. A neuro-fuzzy system can be viewed as a 3-layer feedforward neural network. The first layer represents input variables, the middle hidden layer represents fuzzy rules and the third layer represents output variables. Fuzzy sets are encoded as fuzzy connection weights. It is not necessary to represent a fuzzy system like this to apply a learning algorithm to it. However, it can be convenient, because it represents the data flow of input processing and learning within the model.

Updated 21 Nov This text provides a comprehensive treatment of the methodologies underlying neuro-fuzzy and soft computing. Hi, I need a copy of this book for my PhD research. Can you please send me a pdf copy of this book at aakhter umd. Thank you. Hi, Can you please send me a pdf copy of the book at anso88 protonmail. I am really interested in the topic.


Lecture 34: Neuro-Fuzzy System (Contd.)



5 thoughts on “Neuro-Fuzzy and Soft Computing

  1. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence / Jyh-Shing Roger Jang, Chuen-Tsai. Sun, Eiji Mizutani. p. cm.

  2. Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions.

Leave a Reply